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Abstract            The ice pack covering northern seas is composed of an aggregate of thick 

ridged and rafted ice, undeformed ice, and open water. Existing ice-ocean 
models of the Arctic ice pack are large-scale continuum models that use a 
plastic yield surface to characterize the constitutive behavior of the pack. An 
alternative approach, which captures far more detail, is to explicitly model the 
ice parcels that make up the ice pack. To this end a granular model of the cen-
tral Arctic ice pack has been developed. In the granular model each floe has its 
own ice thickness distribution. Deformation causes leads to open or ridges to 
form between floes. The granular sea ice model was used to simulate a range 
of deformation states from uniform convergence to uniform divergence Two 
sets of simulations were performed. In the first set the joints between 
neighboring floes were unfrozen and hence unable to support tensile forces, 
while in the second set the joints were frozen. Stresses in the simulations were 
calculated in three ways and compared. Yield surfaces constructed from the 
results of the simulations clearly demonstrate the effects of the tensile strength 
between floes. The difference in the yield curves is shown to be related to a 
qualitative difference in the deformation patterns in the model pack. Lastly the 
discussion looks at the differences between the global stress state in the model 
ice pack and the stress state in the individual floes. 

1.        Introduction 
The large-scale processes and properties of the Arctic ice pack depend on 
the granular nature of the pack, particularly on the size and distribution of 
thin lead ice, open water, and multi-year floes. Thin ice and open water 
determine the strength of the pack and the rate of heat exchange between 
atmosphere and ocean necessary in global climate models, single-column 
models, and basin-scale ice-ocean models. 

A granular model of the central Arctic ice pack was developed by Hop-
kins [1996] that embodied the granularity of the ice pack by explicitly con-
sidering individual multiyear floes in a matrix of first-year ice parcels. 
Thicknesses were assigned to each parcel from an assumed thickness distri-
bution. Simulations were performed with the model to determine the plastic 
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yield surface relating stress and deformation, the partition of energy dissi-
pation between ridging and sliding between ice parcels, and the changes to 
the thickness distribution. However, this model was unsuitable for long 
duration simulations for two reasons. First, the time step was very small 
(≈0.02 s) due to the relatively low mass and high modulus of the first-year 
ice parcels. Second, with continuing deformation partially destroying par-
cels and creating open water to form new parcels, the level of detail in the 
model quickly became unmanageable. 

This work uses a new granular model of the Arctic ice pack. Like the 
previous model this model also consists of thousands of discrete polygonal 
floes. However, small parcels of thin, first-year ice are not explicitly mod-
eled. Instead the interior of each floe has its own thickness distribution. 
When the floe interacts with a neighbor the thinnest ice in each floe’s thick-
ness distribution is consumed. The advantages of this approach directly 
address the two shortcomings of the older model. First, the time step is 
much larger (≈1 s) because the mass of the floes is large. Second, the level 
of detail that accompanies deformation is greatly reduced by treating the 
interior of each floe as a continuum with its own thickness distribution, 
rather than trying to explicitly treat each small parcel of thin ice created by 
deformation. 

This new granular sea ice model is used to examine the effects of the 
tensile strength of the joints between neighboring floes. The tensile strength 
between floes is shown to have a profound effect on the yield surface that is 
used to characterize pack ice constitutive behavior in basin scale sea ice 
models. The yield surface is determined by varying the deformation state in 
the model pack by degrees from uniform divergence through uniform con-
vergence. The steady-state stresses calculated during each simulation are 
plotted on principal stress axes to define the yield surface. Two sets of 
simulations are performed. In the first set, the floes in the model pack are 
not frozen together, that is, the joints between neighboring floes do not sup-
port tensile forces. The stresses from this set of simulations form a perfect 
tear drop yield surface similar to the one found by Hopkins [1996]. In the 
second set, the floes are frozen together and able to support tensile forces. 
The stresses from this set of simulations form a Coulomb yield surface with 
a compressive cap [see Coon et al., 1998]. A detailed look at the deforma-
tion that occurs within the model pack shows that in the first unfrozen case 
the deformation is uniformly distributed over the entire domain, while in 
the frozen case the deformation is concentrated along the boundaries of 
large aggregates. This type of aggregate deformation has been found in 
Beaufort Sea SAR ice motion data by Overland, et al. [1998]. 
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2.       Granular Sea Ice Model 
The granular sea ice 
model consists of thou-
sands of discrete po-
lygonal floes. The inte-
rior of each floe is a 
continuum with its 
own thickness distribu-
tion. The model do-
main is a rectangular 
area that can be placed 
at an arbitrary location 
in the Arctic basin. The 
initial configuration of 
the model ice pack, 
constructed by divid-
ing a rectangular con-
trol area into a Voronoi 
tessellation, is shown 
in Figure 1. The dark 
band around the model 
domain in Figure 1 is 
composed of boundary floes. The boundary floe motions can be kinemati-
cally defined by ice motion data from large-scale model output or SAR ve-
locity products. In the interior of the domain the floes can be driven by 
wind stress derived from daily average geostrophic wind fields or by meas-
ured wind stress and by Coriolis forces. Floe motion is retarded by water 
drag. The floes can freeze together so that the joints between floes can sup-
port tensile as well as compressive forces. Deformation causes the floes in 
the interior of the domain to be pushed together to form pressure ridges and 
pulled apart to form leads. When a pair of neighboring floes are pushed 
together the polygons defining the shape of each floe intersect. The geomet-
ric algorithm used to define the intersection of the floe polygons is de-
scribed by Hopkins [1996]. The intersection area is interpreted as thin ice 
destroyed by ridging. The thinnest ice in the thickness distribution belong-
ing to each floe is ridged.  

Ridging forces at points of contact between converging floes are deter-
mined from the results of computer simulations of the pressure ridging 
process [Hopkins, 1998]. The ridging force (per meter of ridge length) as a 
function of lead ice thickness h and the extent or length of lead ice L that is 

 
Figure 1. Model ice pack after 1% divergence with e 1 = e 2. 
The model pack is 90 × 90 km. The floes were initially frozen 
together. The shades of gray show the individual floes. The 
dark lines crossing the interior are leads.  
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pushed into the ridge was  F=7300h3/2L1/2 during stage 1 (the period of sail 
growth) and F=95400h3/2 during stage 2 (when the sail has reached its 
maximum size). 

In the simulations described in this paper the floes in the 90×90 km 
model pack are initially frozen together. That is, the joints between 
neighboring floes are capable of supporting tensile strength. A crack is ini-
tiated in a joint when the stress at either end of the joint exceeds the speci-
fied tensile strength σt in tension or a compressive strength criteria based on 
unconfined buckling strength [Kovacs and Sodhi, 1980]. Once initiated the 
crack travels at a constant speed until the joint is broken. In this study the 
model pack is driven by a uniform deformation field. Deformation of the 
domain is accomplished by distorting the domain by specifying the princi-
pal strain rates e xx (∂u/∂x) and e yy (∂v/∂y), which are held constant for the 
duration of each simulation. The equation describing the floe motion is 

x x t v x en n+ = + + ⋅1 ∆ ( ~)      (1) 

where the superscript n denotes the current time step, ∆t is the length of the 
time step, and ~e is the strain rate tensor. The velocity v  is the fluctuating 
component about the prescribed mean motion. Although the mean motion 
of the ice floes is constrained, individual floes are free to move in response 
to applied forces. The boundary floes, whose fluctuating velocity v = 0, do 
not respond to applied forces. This simulation technique was developed by 
Cundall and Strack [1979]. The technique was used by Hopkins [1996] 
with periodic boundaries in an earlier granular simulation of the ice pack. In 
this study the ocean is stationary. The model pack in Figure 1 was subjected 
to uniformly divergent deformation at strain rates of e xx= e yy= 1x10-6s-1. 
The duration of the simulation was 5000 s. The dark lines crossing the pack 
are leads. The figure shows that, although the applied deformation field is 
uniform, the response is not. Water drag is applied with a linear drag coef-
ficient to the fluctuating velocities. 

3.        Three Methods of Calculating Stress 
Stress in the model pack was calculated in three different ways. The first 
method was to sum forces at each boundary and divide by the length of the 
boundary. I call this the boundary stress method. The second method was to 
sum interior forces at contacts between neighboring floes, an approach de-
veloped by Cundall and Strack [1979]. The equation for this version of the 
stress is 
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σ ij i j

t

TA
r F= ∑∆

      (2) 

where ri is the vector connecting the center of two floes, Fj is the force be-
tween them, T is the sampling interval, and A is the area of the model ice 
pack. The summation is over every contact at each time step during the 
sampling interval. I call this the internal stress method. 

The third method is based on a linear elastic boundary element model 
[Brebbia and Dominguez, 1992].  One hundred floes in the model ice pack 
were chosen at random. At 10 s intervals the contact forces and their loca-
tions on the floes were stored. After the simulation the floe boundaries were 
divided into quadratic boundary elements with nodes at each vertex and at 
the center of each side. D’Alembert forces were applied to the nodes. The 
contact forces on the floe and the d’Alembert forces were divided amongst 
the nodes such that the sum of the x and y forces and the torque on the floe 
were zero. Nodal pressures were calculated from the nodal forces. The 
stresses at the center of the floe were calculated using the boundary element 
program of Brebbia and Dominguez [1992]. That the three methods give 
similar results is shown in Figure 2. The figure compares the stresses σxx 
and σyy calculated using the 3 approachs described above. Compressive 
stresses are negative. 
The results are from a 
simulation in which the 
principal strains e xx = 
− e yy = −10-6 s-1 (ie. 
pure shear). In this 
simulation the floes 
were initially frozen 
together. The initial 
rapid rise and fall in 
the magnitudes of both 
stresses is caused by 
the rapid loading and 
breaking of some of 
the initially frozen 
joints in the model 
pack. Approximately 
3000 of the initial 5000 
frozen joints remain 
frozen at the end of the 
simulation. Interest-

 
Figure 2. Comparison of the stresses σxx and σyy calculated 
using 3 different approachs from a simulation in which the 
principal strains e xx = − e yy = 10-6 s-1 (ie. pure shear). In this 
simulation the floes were initially frozen together.  
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ingly, this result varied little over the whole range of deformation states. 
After the initial breakage, the more negative of the stresses, σxx, in Figure 2 
decreases slowly due to work hardening caused by the disappearance of the 
thinnest ice and the growth of pressure ridges. It is very important to note 
that the stresses in the discussion that follows were the ones calculated and 
averaged over the last 500 s of each simulation, when, as shown in Figure 
2, the stresses have reached some semblance of steady state behavior, albeit 
slowly work-hardening due to ridge growth. It is important to emphasize 
that the stresses in the final 500 s do not reflect the initial uniformly frozen 
state of the model pack. 

The off-diagonal stresses calculated using the first two methods dis-
cussed above, the boundary method and the internal method, were close to 
zero, while the off-diagonal stresses calculated using the boundary element 
method were similar in magnitude to the diagonal components. This shows 
that, while the x and y-direction stresses passing through the system are 
calculated properly by the boundary element method, the contact loads on 
the individual floes give rise to tensile and compressive forces within the 
floes. This results in a rotation of the principal stresses at points within the 
floes such that they are no longer aligned with the global x,y coordinate 
frame. 

4.        Stress in the Model Ice Pack 
Simulations were run using a range of principal strains from uniform diver-
gence through uniform convergence and back. The strain rate tensor e  was 
comprised of the diagonal terms e xx and e yy. The off diagonal terms were 
both zero. The magnitude of the rate of deformation, 2 2 1/ 2

1 22( )e e e= + , 
was held constant. The diagonal terms e xx and e yy were chosen by setting 
e xx = e  cosθ and e yy = e  sinθ, varying θ from 0° to 360° in 7.5° incre-
ments. In the following discussion deformation is expressed in terms of the 
strain rate invariants e I (the divergence of velocity) and e II (±2(-det e ′)1/2) 
following Rothrock [1975]. 

Two sets of simulations were performed. In the first set the floes in the 
interior of the model pack were not ‘frozen’ together. That is, contacts be-
tween adjacent floes could not support tensile forces. In the second set of 
simulations the floes were initially ‘frozen’ together. The duration of each 
simulation was 5000 s. The model pack at the end of a simulation for the 
case of uniform divergence ( e I = 2×10-6 s-1 and e II = 0), with the floes ini-
tially frozen together, is shown in Figure 1. The dark lines running through 
the model pack are leads. The parameters used in the simulations are listed 
in Table 1. 
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Table 1. Parameters Used in the Simulations. 

Parameter Symbol Value 
Strain rate magnitude e  2 × 10-6 s-1 
Pack width and height  90 km 
Ice tensile strength σt 600 kPa 
Ice density ρi 920 kg m-3 
Sea water density ρw 1010 kg m-3 
Floe elastic contact stiffness kn 250 kN m-1 

Friction coefficient µ 0.5 
Water drag coefficient Cw 0.005 

The tensile strength σt used in the simulations was from Richter-Menge 
and Jones [1993]. Values of ρw, ρi,  and Cw were from Hibler [1986]. The 
elastic contact stiffness kn was chosen with an eye to computational effi-
ciency, since the nominal time step is proportional to the square root of the 
minimum floe mass divided by the stiffness. The time step in the simula-
tions was 1 s. The friction coefficient µ was chosen arbitrarily. It is the mid-
range value tested by Hopkins [1996] and is meant to incorporate some of 
the effects of floe perimeter roughness. There were about 2000 floes in the 
model pack. The thickness distribution g(h) used to initialize the thin end of 
the thickness distribution of the individual floes is given in Table 2. Ice 
thicker than 2 m did not enter the ridging calculations because of the brev-
ity of the simulations. 

Table 2.  Initial Ice Thickness Distribution. 

h (m) g(h) (m-1) h (m) g(h) (m-1) h (m) g(h) (m-1) 
.125 .110 .875 .140 1.625 .170 
.375 .119 1.125 .151 1.875 .170 
.625 .128 1.375 .161 2.125 .169 

 
During each simulation the energy balance was calculated to verify the 

self-consistency of the simulation. The components of the energy balance 
are boundary work, inelastic dissipation (including ridge building), fric-
tional dissipation, and water drag. The calculations are described in Hop-
kins [1996]. The error in the energy balance was less than 1% of the total 
work performed by the boundaries.  
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The stresses that were 
calculated in both sets of 
simulations by the internal 
method (2) were plotted on 
principal stress axes to 
define a yield surface. The 
yield surface for the unfro-
zen pack is shown in Fig-
ure 3. The data points rep-
resent the average of the 
stresses over the last 500 s 
of each simulation. The 
strain vector correspond-
ing to each data point is 
shown by the attached 
arrow. The general shape 
of the yield surface could 
be described as a tear drop. 
This shape was obtained 
by Hopkins [1996] in 
simulations with a similar, but more detailed, granular model of the ice 
pack, which was also un-
frozen. This is also one of 
the yield curves obtained 
analytically by Rothrock 
[1975]. The strain vectors 
show that, except at points 
in the compressive region, 
the normal flow rule is not 
obeyed. Another point 
which may be noted is that 
the data points are fairly 
evenly spaced around the 
yield surface. 

The yield surface for 
the frozen pack is shown 
in Figure 4. The stresses, 
calculated by the internal  
method (2), from 3 simula-
tions using 3 different ini-
tial configurations were 

 
Figure 3. Yield surface constructed from the results of simu-
lations in with an unfrozen model pack. The arrows show the 
strain vector associated with the stress data points. 

 
Figure 4. Yield surface constructed from the results of simu-
lations with a frozen model pack. The arrows show the strain 
vector associated with the stress data points.

 
Figure 5. Yield surface constructed from the results of 
simulations with a frozen model pack. The data points 
are stresses averaged over 10 s intervals during the final 
500 s of the simulations.

 
Figure 6. Boundary element principal stresses from a 
simulation with a frozen pack  for a state of uniform 
convergence. 
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averaged together to obtain each data point. Since the data is not as smooth 
I have averaged the data about the line of symmetry. Again, the data points 
represent the average of the stresses over the last 500 s of each simulation. 
The strain vector corresponding to each data point is shown by the attached 
arrow. The general diamond shape of the yield surface was the one chosen 
for the AIDJEX constitutive law by Pritchard [1981]. A similar yield sur-
face has been deduced from field measurements by [Coon, et al. 1998]. The 
normal flow rule seems to apply except in the region around pure shear ( e I 
= 0 and e II=2×10-6s-1). Interestingly, in contrast to the unfrozen state in 
Figure 3, the data points congregate around states of uniform divergence, 
pure shear, and uniform convergence. In particular, strains having no con-
vergent components congregate around a state of uniform divergence; 
strains having no divergent components congregate around a state of uni-
form convergence; strains having one divergent and one convergent com-
ponent congregate around a state of pure shear. This congregation of the 
data points into distinct regions is clearly shown in Figure 5. The individual 
data points obtained at 10 s intervals over the last 500 s of each simulation 
are plotted. The data has not been averaged about the line of symmetry. The 
concavity of the yield surface in Figure 4 may be due to the small size of 
the model ice pack and the small number of slip lines that develop in it (see 
Figure 8). 

Principal stresses calculated by the boundary element method from a 
simulation in which the strain invariants e I = -2×10-6 s-1 and e II = 0 (ie. 
uniform convergence) are plotted in Figure 6. The pressure invariant (half 
the sum of the principal stresses) is plotted on the horizontal axis and the 
shear invariant (half the difference) is plotted on the vertical axis. In this 
simulation the floes were initially frozen together. The stresses were calcu-
lated at the center of 100 randomly chosen floes at 10 s intervals during the 
final 500 s of the simulation. Table 3 lists the average principal stresses 
calculated using the boundary stress method (I) and the boundary element 
method (III) for 3 deformation states; pure shear, uniaxial convergence and 
uniform convergence. The stresses for both methods were averaged over 
the final 500 s of the simulations. Table 4 lists the pressure-resultant invari-
ant and shear-resultant invariant calculated using methods I and III for the 
same deformation states.  
 

Table 3. Principal stress comparison. 

e I e II σ1 I σ2 I σ1 III σ2 III 
10-6 s-1 10-6 s-1 kPa kPa kPa kPa 
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0 2 0.28 -4.03 3.08 -7.07 
-1.414 -1.414 -1.02 -6.57 4.14 -11.25 

-2 0 -6.04 -6.08 0.76 -15.24 

Table 4. Principal stress sum and difference comparison. 

e I e II 1
2 1 2( )σ σ+

 I 

1
2 1 2( )σ σ+

 III 

1
2 1 2( )σ σ−

 I 

1
2 1 2( )σ σ−

 III 
10-6 s-1 10-6 s-1 kPa kPa kPa kPa 

0 2 -1.88 -1.99 2.16 5.07 
-1.414 -1.414 -3.79 -3.56 2.78 7.70 

-2 0 -6.06 -7.24 0.02 8.00 
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The pressure-resultant 
invariants are quite simi-
lar. The difference is 
probably due to the rela-
tively small number (100) 
of boundary element stress 
sites. The shear-resultant 
invariants are very differ-
ent. This difference is 
probably due to the fact 
that the individual floes 
(represented in the bound-
ary element model as lin-
ear elastic continua) have 
a higher tensile strength 
(in this case infinite) than 
the discontinuous model 
ice pack composed of dis-
crete floes.  

The amount of lead 
area and ridged ice area 
at the end of each simu-
lation in the second set is 
shown in Figure 7 as a 
function of θ defined as 
θ=tan-1( e II/ e I) by Ro-
throck [1975]. A value 
of θ equal to zero corre-
sponds to uniform diver-
gence and a value of θ 
equal to π corresponds to 
uniform convergence. 
Net opening and ridging 
are expressed as a per-
centage of the area of the 
entire domain. The net 
shear and divergence are 
also shown in Figure 7. 
The duration of each 
simulation was 5000 s. 
In the simulations the 

 
Figure 7. Area of leads and ridged ice as a fraction of total 
area at the end of each simulation as a function of θ. Net 
shear and divergence are also shown as a function of θ. Re-
sults of simulations with a frozen pack. 

 
Figure 8. Model ice pack after undergoing pure shear defor-
mation ( e I = 0 and e II = 2×10-6 s-1). The floes were initially 
frozen together. The small vectors show relative motion 
between adjacent floes. 
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simulations the floes were initially frozen together. The opening and ridg-
ing are nearly mirror images of each other and both follow the net diver-
gence curve quite closely.  

The profound difference in the yield curves in Figures  3 and 4 is due to 
the presence or absence of tensile strength in the model ice packs used in 
the two sets of simulations. Tensile strength also produces a similarly large 
effect in the deformation in the two cases. The deformation of the frozen 
pack for a state of pure shear is shown in Figure 8. The small vectors in the 
figure are proportional to the change in the line of center vectors between 
neighboring floes. The figure shows that the deformation is concentrated 
along the boundaries of large aggregates of floes with relative motion oc-
curing both normal and parallel to the boundaries. The deformation state of 
the unfrozen pack for the same state of pure shear shows nearly uniform 
distribution of relative motion vectors. The stark difference between the 
two patterns of deformation must be responsible for the difference in the 
yield surfaces. 

5.        Conclusions 
A granular model of the Arctic ice pack was used  to simulate a range of 
deformation states from uniform convergence to uniform divergence. Two 
sets of simulations were performed. In the first set the floes that make up 
the model pack were in an unfrozen state, that is, the joints between adja-
cent floes were not able to support tensile forces. In the second set the floes 
were initially frozen together and the joints between adjacent floes were 
able to support tensile forces.  

Stresses were calculated in the model ice pack in 3 ways: by dividing 
boundary forces by boundary lengths; using the contact forces between 
adjacent floes; and by using a boundary element technique to calculate the 
internal stresses at the centers of 100 of the nearly 2000 floes. The x and y 
direction stresses calculated with the 3 methods showed good agreement. 
With the first two methods, the pricipal stress directions were closely 
aligned with the principal strain directions (x and y) and the off diagonal 
terms of the two stress tensors were nearly zero. However, the principal 
stress directions calculated with the boundary element method in the inte-
rior of the floes were widely scattered as were the magnitudes. The pres-
sure-resultant invariants for the 3 methods were quite similar. The differ-
ence was probably due to the relatively small number of boundary element 
stress sites. However, the shear-resultant invariants were very different. 
This difference is probably due to the fact that the individual floes (repre-
sented in the boundary element model as linear elastic continua) have a 
higher tensile strength (in this case infinite) than the discontinuous model 
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ice pack composed of discrete floes that can separate to form leads. Also, 
the lack of failure mechanisms at the floe scale such as the presence of 
thermal cracks or other flaws that might relieve tensile stress probably 
causes the boundary element method to overestimate the tensile stress 
within floes. 

The stresses calculated in the two sets of simulations were plotted on 
principal stress axes to form yield curves. The yield curves were strikingly 
different. In the unfrozen case the yield curve was a rather perfect tear drop 
shape, while in the frozen case the yield curve was an untidy diamond-
shaped surface. Not only were the shapes very different, but the distribution 
of the 48 individual deformation states about the yield curves were rather 
uniform in the unfrozen case and strongly clustered in the frozen case. The 
marked qualitative difference between the two yield curves was related to 
an equally marked qualitative difference between the deformation patterns 
created during the two sets of simulations. In simulations with the frozen 
pack, deformation occured along the boundaries of large aggregates of 
floes. While in simulations with the unfrozen pack, deformation was uni-
formly spread over the entire domain.  

The low overall stress levels in the simulations were due to the large 
amount of thin ice in the initial thickness distribution and the fact that the 
thin ice was distributed uniformly over all of the floes. This gave the model 
pack a uniformity it would not normally have in a long-term simulation 
driven by realistic non-uniform derformation fields and subject to thermo-
dynamic ice growth and melt. The resulting non-uniformity in the ice thick-
ness distribution would be expected to cause a seasonal fluctuation in over-
all average stress levels. 
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